Feed-forward inhibition in the hippocampal formation.

نویسنده

  • G Buzsáki
چکیده

An overview of the current literature reveals a richness and complexity of anatomical, pharmacological and physiological features of the input systems to the archicortex. Evidence is cited to demonstrate that several afferent paths terminate on and directly excite hippocampal formation interneurons ("non-principal" cells) besides their contacts with pyramidal and granule cells (principal cells). Since all interneurons are thought to be inhibitory, afferent excitation results in a dual effect: direct excitation of principal cells is coupled with concurrent disynaptic feed-forward inhibition. Interneuron activation generally precedes principal cell activation when both are driven by a given afferent path. At least some interneurons take a part in both feed-back and feed-forward inhibition. It is suggested that most of the major inputs to the hippocampal formation dually innervate both interneurons and principal cells and that the excitability of the principal cells depends upon the relative strengths of the inputs to these two cell types. The hypothesis of dual innervation appears powerful in resolving existing anatomical and physiological controversies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition.

The temporal resolution of neuronal integration depends on the time window within which excitatory inputs summate to reach the threshold for spike generation. Here, we show that in rat hippocampal pyramidal cells this window is very narrow (less than 2 milliseconds). This narrowness results from the short delay with which disynaptic feed-forward inhibition follows monosynaptic excitation. Simul...

متن کامل

Orphanin-FQ/nociceptin inhibits kindling epileptogenesis and enhances hippocampal feed-forward inhibition.

The role of Orphanin-FQ/nociceptin in synaptic plasticity was assessed by its potency in modulating kindling epileptogenesis in vivo, and feed-forward inhibition in hippocampal recordings in vitro. In addition, a specific rabbit antiserum against this peptide was obtained and the immunohistochemical distribution of nociceptin was determined in rat brain slices. After the establishment of kindli...

متن کامل

Feed-forward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1 Norbert Hajos, Institute of Experimental Medicine of the Hungarian Academy of Sciences

http://jneurosci.msubmit.net JN-RM-3680-12R2 Feed-forward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1 Norbert Hajos, Institute of Experimental Medicine of the Hungarian Academy of Sciences Rita Zemankovics, Institute of Experimental Medicine Judit Veres, Institute of Experimental Medicine Iris Oren, Centre of Cognitive and Neuro...

متن کامل

GABAB receptor-mediated feed-forward circuit dysfunction in the mouse model of fragile X syndrome.

KEY POINTS Cortico-hippocampal feed-forward circuits formed by the temporoammonic (TA) pathway exhibit a marked increase in excitation/inhibition ratio and abnormal spike modulation functions in Fmr1 knock-out (KO) mice. Inhibitory, but not excitatory, synapse dysfunction underlies cortico-hippocampal feed-forward circuit abnormalities in Fmr1 KO mice. GABA release is reduced in TA-associated i...

متن کامل

Delta Opioid Receptors Regulate Temporoammonic-Activated Feedforward Inhibition to the Mouse CA1 Hippocampus

The opioid system influences learning and memory processes. However, neural mechanisms underlying the modulation of hippocampal activity by opioid receptors remain largely unknown. Here, we compared how mu and delta receptors operate within the mouse CA1 network, and used knock-in mice expressing functional delta opioid receptors fused to the green fluorescent protein (DOR-eGFP) to determine ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Progress in neurobiology

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 1984